数据湖核心能力

数据湖核心能力解析

数据湖作为现代企业数据平台架构的基石,正逐渐成为数据处理与分析领域的核心组件。本文旨在深入探讨数据湖的核心能力、发展趋势以及关键技术应用,以期为构建高效、灵活的数据处理平台提供理论指导与实践参考。

数据湖核心能力

 

数据湖发展趋势分析

  1. 传统架构的演变:

传统数据平台架构由数据湖、流式计算和OLAP引擎查询三部分组成,分别负责海量数据存储与批量计算、实时数据流处理和数据查询业务。

以往,这三个平台独立建设,数据互通需通过复杂方案实现,如Lambda架构、Kappa架构等,导致建设与维护成本高昂,数据共享复杂。

  1. 融合数据湖的兴起:

为解决传统架构的弊端,融合数据湖应运而生,通过流批一体的架构实现实时计算和批量计算的数据共享,避免数据冗余和数据搬迁。

融合数据湖采用Lakehouse技术,构建湖内数仓,实现OLAP能力,提高数据处理效率,降低建设与维护成本,实现数据的共享和流通。

 

数据湖整体架构

数据湖整体架构基于开源技术构建,分为数据源、数据集成、数据存储、数据计算、湖内交互式分析和OLAP层等关键环节:

  1. 数据源:包括业务数据库、消息流、日志等,是数据流的起点。
  2. 数据集成:实现业务系统与数据湖之间的桥梁,支持批量和实时集成方式,满足不同业务诉求。
  3. 数据存储:采用Lakehouse技术进行数据存储管理,支持HDFS或对象存储引擎,存储格式为Parquet和ORC,提供高效压缩和编码方式。
  4. 数据计算:支持流批一体的计算引擎,如Spark、Flink和Hive,实现灵活的数据处理。
  5. 湖内交互式分析:通过Presto、Trino等交互式查询引擎,实现秒级时延的查询性能。
  6. OLAP层:在湖内进行数据加工处理后,同步到OLAP组件,提供快速查询能力,部分OLAP组件可直接查询湖内数据。

 

数据集成

数据集成作为业务系统与数据湖之间的桥梁,面临多种数据源和集成方式的挑战:

  1. 批量集成:采用定时周期性搬迁方式,适用于对时效性要求不高的场景,面临大数据量集成的吞吐压力。
  2. 实时集成:采用上游数据变更触发的数据搬迁方式,提高数据时效性,需保证完整性、有序性和稳定性。
  3. 开源工具的应用:随着技术的发展,开源工具已实现流批一体的实时数据集成,降低建设成本和技术复杂度。

 

Lakehouse核心能力

Lakehouse技术为数据湖带来了革命性的变革,继承数据湖的灵活性和可扩展性,引入了数据仓库的关键特性:

  1. 增强的DML SQL能力:支持update、upsert和merge into等操作,实现数据更新能力。
  2. Schema Evolution:支持Alter table能力,灵活适配业务演进发展。
  3. ACID事务和多版本支持:确保数据一致性和完整性,提供数据回滚能力和时间旅行功能。
  4. 并发控制:处理并发读写操作,确保数据一致性和准确性。
  5. 时间旅行:支持访问任意时间点的数据快照,便于数据回溯和历史分析。
  6. 文件存储优化:优化数据存储格式,支持高效OLAP查询。
  7. 流批一体处理:同时支持流式和批量数据读写,满足多样化数据处理需求。
  8. 索引构建:提供索引构建能力,加速OLAP查询。
  9. 自动化管理:包括数据合并、历史数据清理、索引构建等,减轻用户维护负担。

 

Lakehouse开放性设计

在现代数据湖的Lakehouse架构中,保持开放性设计原则至关重要:

  • 数据格式的开放性:采用标准化、与开源社区广泛兼容的数据格式,如Parquet和ORC,实现与各种数据处理工具和计算引擎的无缝对接。
  • 计算引擎的开放性:支持多种开源和商业计算引擎接入,根据业务需求选择最合适的计算引擎。
  • 元数据与数据权限的集成:确保数据组织和管理效率,提供精细的数据访问控制。
  • 多云部署能力:支持私有云和公共云环境中的部署,根据业务需求和资源状况选择最合适的部署环境。

 

流批一体

流批一体架构是现代数据处理平台的核心特征之一,实现数据存储、计算的深度融合:

  1. 数据存储的流批一体:同一份数据既支持流式读取也支持批量读取,确保数据一致性,减少数据冗余。
  2. 计算引擎的流批一体:流式计算和批量计算由同一个计算引擎完成,降低架构复杂度和开发者使用门槛。
  3. 数据处理代码的流批一体化:数据处理代码同时适用于流式和批量方式执行,降低开发成本,保证流批任务代码逻辑一致性。

 

实时OLAP

OLAP能力是实现快速数据分析和决策支持的关键:

  1. 秒级查询时延和数百级别并发查询能力:满足业务对快速响应和高效处理的需求。
  2. 弹性伸缩能力:基于容器化部署能力,根据业务量波动迅速扩展计算能力,优化资源利用率和成本效率。

 

湖内建仓

湖内建仓是将数据仓库的能力集成到数据湖内部,实现数据的高效管理和分析:

  1. 数据文件层存储优化:实施排序存储、哈希分布等技术,提高数据文件访问效率。
  2. 索引层构建:采用数据裁剪、下推和缓冲等技术优化计算性能,提供统一元数据服务。
  3. 数仓模型与表模型:继续使用传统数仓分层存储模型和主题域划分,采用快照表模型、拉链表模型等进行数据存储。

 

数据湖作为现代企业数据平台架构的重要组成部分,正通过融合数据湖、Lakehouse技术、开放性设计、流批一体架构等关键技术和理念,推动数据处理与分析领域的发展与创新。

(0)
HYPERS嗨普智能HYPERS嗨普智能
上一篇 2024-09-17 12:05
下一篇 2024-09-19 11:41

相关推荐

  • B端企业如何部署AI触达系统?内容驱动的智能推送策略全解析

    企业触达体系的升级迫切性:从量产触达走向智能调度 在B端营销和客户服务场景中,用户触达长期依赖人工设定规则、定期群发模板、依靠经验运营。而在新一轮AI能力成熟与私域体系构建的大趋势下,触达方式正在从“运营驱动”向“数据驱动+算法自动调度”迁移。尤其是在企微、短信、公众号、App Push等多通道并存的环境中,品牌需要更智能的方式决定“对谁说、何时说、说什么、…

    2025-07-01
  • 数据清洗

    数据清洗:解锁数据价值的钥匙 在当今这个数据驱动的时代,数据被誉为“新石油”,是推动业务决策、科学研究进步的关键资源。然而,原始数据往往是不完美的,充斥着错误、重复、缺失或不一致的信息。为了充分挖掘数据的价值,数据清洗成为了数据处理环节中不可或缺的一环。本文将详细介绍数据清洗的基本概念、重要性、流程、常用技术,以及面临的挑战与未来趋势,并通过实例分析展示其在…

    2024-11-17
  • 金融机构如何通过智能化营销自动化提升客户关怀与粘性?

    在中国的金融市场,随着消费者对金融产品和服务的要求越来越高,金融机构必须通过更加精准、高效、个性化的方式来提升客户关怀与客户粘性。营销自动化技术,尤其是智能化营销自动化,成为了金融机构提升客户体验、加强客户关系管理和增强客户忠诚度的重要工具。 以下是金融机构如何通过智能化营销自动化提升客户关怀与粘性的一些策略,并结合中国市场的实际环境进行分析。 一、基于数据…

    2024-11-23
  • B2B CDP如何赋能企业客户关系管理与营销优化?

    引言 在B2B领域,客户关系管理(CRM)与营销优化一直是企业增长的核心命题。然而,传统B2B营销往往面临数据孤岛、线索质量参差、营销与销售割裂等挑战,难以实现高效的客户触达与精细化运营。 随着CDP(客户数据平台)在B2C领域的成熟应用,越来越多的B2B企业开始借助CDP进行客户数据整合与营销优化。通过打通官网、线索平台、销售CRM、企业微信、市场活动等数…

    2025-04-01
  • MA是什么意思?MA(营销自动化)深度解析

    MA(营销自动化)深度解析 在数字化时代,营销领域正经历着前所未有的变革。其中,MA(Marketing Automation,营销自动化)作为一股强大的力量,正逐步改变着企业的营销方式和客户体验。本文将从MA的定义与内涵、主要作用、核心功能、实施步骤、应用场景以及未来趋势等多个方面,对营销自动化进行深度解析。 MA的定义与内涵 MA,全称为Marketin…

    2025-01-07

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-8282-815

邮件:marketing@hypers.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信