一文读懂数据中台?

数据中台概述

  1. 数据中台介绍

数据中台是一种通过先进的数据技术,对海量数据进行采集、计算、存储、加工,并统一标准和口径的平台。数据中台通过整合并标准化数据,形成标准数据资产层,为企业或政府机构提供高效的数据服务,助力决策分析和业务创新。

  1. 数据中台设计原则

– 数据的一致性与标准性:确保数据在不同系统和应用中的一致性和可比性。

– 数据的实用性与服务性:强调数据的应用价值,支持多样化的业务需求。

– 数据的独立性与可拓展性:保持数据模块的独立性,同时易于扩展以适应未来需求。

– 数据的安全性:确保数据在采集、处理、存储和应用过程中的安全性。

– 数据的分级管理机制:根据数据敏感性和重要性实施分级管理,保障数据安全合规。

  1. 数据中台设计方法

– 基于面向服务的架构方法(SOA):通过定义良好的接口和契约,将不同功能单元抽象为服务,构建灵活的业务流程和IT架构。

– 业务系统规划法(BSP):将长期战略目标转化为信息系统目标,通过一系列步骤制定信息系统规划。

– 系统工程论:采用全面和运动的观点分析系统问题,确保处理方法的完整性和科学性。

一文读懂数据中台?

数据中台核心功能

  1. 技术架构

数据中台技术架构涵盖了结构化数据、非结构化数据、半结构化数据的处理。平台包括数据统一采集接入、集中处理、组织管理、全域治理、融合共享、分析挖掘、知识图谱、统一管理、可视化等多个系统。

  1. 层次架构

数据中台层次架构基于数据资源需求分析和愿景目标,通过大数据采集感知体系、数据资源融合体系和信息共享服务体系,融入数据安全和标准,不断提升数据处理和服务能力。

  1. 逻辑架构

逻辑架构围绕数据资源的接入、处理、组织、挖掘、治理和服务等关键环节,规划大数据感知采集体系、数据资源融合体系及数据共享服务体系,确保数据的高效使用和管理。

  1. 数据架构

数据架构支持多源异构数据处理,通过资源库、主题库、业务库、知识库等组织数据,提供稳定高效的数据支撑服务。

  1. 数据统一采集接入平台

– 平台架构:采用统一数据接入模式,支持多源异构数据资源的接入。

– 数据流程:提供一站式数据迁移接入功能,支持数据清洗、加密、断点续传等。

– 平台功能:包括数据接入、策略配置、断点续传、任务管理、数据清洗、统计、对账和质量检测等。

  1. 数据集中处理平台

– 平台架构:通过数据提取、清洗、关联、比对、标识等流程实现数据标准化处理。

– 功能特点:支持实时和离线计算,引入人工智能技术提升数据价值。

  1. 数据组织管理平台

– 平台功能:包括原始库、资源库、主题库、业务库和知识库的建设,提升数据质量和价值。

  1. 数据全域治理平台

– 平台架构:管理数据标准、元数据、血缘关系、数据质量等,确保数据全生命周期的高质量管理。

– 数据资产目录:建立统一的数据资源目录,促进数据科学有序共享。

  1. 数据质量管理平台

– 数据标准管理:统一管理数据标准,规范数据格式和命名。

– 数据生命周期管理:贯穿数据采集、存储、处理、分析等全生命周期。

  1. 数据共享服务平台

– 平台架构:通过服务总线提供API接口服务,支持数据订阅、推送、下载等多种交换方式。

– 功能特点:包括数据服务总线设计、数据服务场景设计、数据交换服务和数据可视化服务等。

  1. 数据可视化平台

– 平台架构:提供丰富的可视化组件,支持多场景模板管理和自定义展示。

– 功能特点:包括地图分析、仪表盘、大屏幕展示、报表报告、分析报告等,支持丰富的交互查询和历史回放功能。

 

主要关键技术

– 内存级数据交换共享:支持多元异构数据迁移、实时交换、分布式内存处理等。

– 一站式数据集成和数据管理:提供全面的数据集成和管理解决方案。

– 数据分析模型:构建高效的数据分析模型,支持复杂业务分析。

– 数据治理技术:确保数据质量、安全性和合规性。

– 数据挖掘技术:从海量数据中提取有价值信息。

– 可视化建模技术:提供直观的数据建模工具,简化数据分析流程。

– NLP语义分析技术:对非结构化文本进行智能处理,提取业务标签。

– 知识图谱技术:构建实体关系网络,提升数据应用价值。

 

通过上述技术和平台功能,数据中台能够为企业或政府机构提供全面、高效、安全的数据服务,支持决策制定和业务创新。

(0)
HYPERS嗨普智能HYPERS嗨普智能
上一篇 2024-09-15 22:08
下一篇 2024-09-15 22:16

相关推荐

  • 如何使用CPM工具确保PIPL、GDPR、CCPA 等法规的全面合规?

    随着全球数据隐私法规的日益严格,企业在开展数字化营销、数据收集和用户数据管理时,面临着越来越复杂的合规要求。特别是在中国市场,《个人信息保护法》(PIPL)的实施为企业的用户数据管理提出了新的挑战和机遇。同时,随着全球跨境数据流动的频繁,欧美的《通用数据保护条例》(GDPR)和《加州消费者隐私法案》(CCPA)等法规,也对企业的数据处理与隐私政策提出了更高的…

    2025-04-11
  • 数据资产管理是什么?标签作为中台核心如何连接数据与应用?

    在企业的数字化转型过程中,“数据资产管理”成为关键战略,意指对企业数据从采集、存储、治理到应用的系统化管理机制。与传统数据仓库或数据湖相比,更关键的是如何让数据真正服务业务。这时,“标签”作为中台的重要构件横空出世,通过结构化表达业务逻辑与数据融合,让数据与应用直接对接,实现数据资产实用化。 本文将从数据资产管理的核心理念出发,深入探讨标签如何在中台架构中充…

    2025-08-06
  • AI邀约到店是什么?企业如何用AI提升门店转化效率

    摘要 AI邀约到店是利用人工智能技术实现的智能客户触达与转化机制。它通过大数据分析、客户画像、智能话术和自动化流程,帮助企业高效邀约潜客到店,减少人力成本,提升到店率和成交率。相较于传统人工邀约,AI邀约更加精准、可规模化、可追踪,并且能够在多个渠道同时触达用户。本文将系统拆解AI邀约到店的原理、应用价值、行业实践和未来趋势,结合HYPERS嗨普智能的案例,…

    2025-09-09
  • 什么是线索管理平台:从概念到核心价值

    什么是线索管理平台:从概念到核心价值 线索管理平台是企业用于系统化管理销售线索的软件系统。它贯穿于从潜在客户首次接触到最终成交的全过程,是现代企业销售效率的核心支撑工具。 根据Salesforce《2024销售状况报告》的数据,使用专业线索管理平台的企业比依赖Excel表格的企业,销售转化率高出47%。这一数据充分说明了系统化线索管理的必要性。 线索管理平台…

    2025-09-24
  • 用户同意与偏好管理:零售品牌如何增强消费者信任与忠诚度?

    在数字化时代,消费者数据成为了零售品牌营销和服务创新的核心资产。通过精准分析和个性化服务,零售品牌能够提供更加符合消费者需求的产品和体验,从而增强客户的忠诚度和品牌粘性。然而,随着消费者对隐私保护意识的提高,如何在合规和透明的前提下高效地管理用户同意与偏好,成为了零售品牌面临的重要课题。 在中国市场,随着《个人信息保护法》与《数据安全法》实施,消费者对隐私的…

    2024-12-05

发表回复

您的邮箱地址不会被公开。 必填项已用 * 标注

联系我们

400-8282-815

邮件:marketing@hypers.com

工作时间:周一至周五,9:30-18:30,节假日休息

关注微信